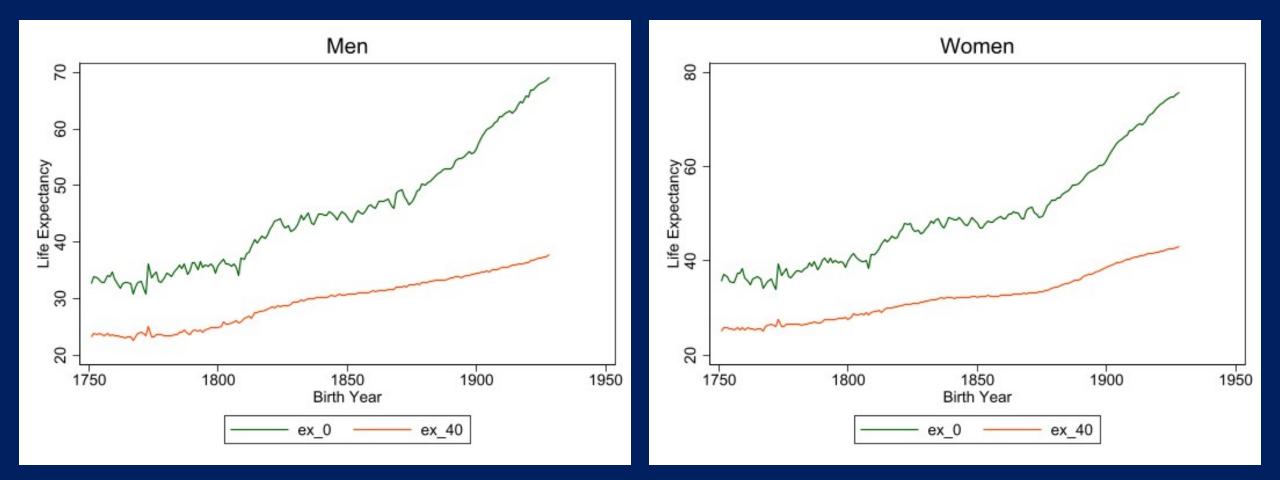

THE ECONOMY, THE GHOST IN YOUR GENE AND THE ESCAPE FROM PREMATURE MORTALITY

DORA L. COSTA UCLA AND NBER Joint with Lars Olov Bygren (Karolinksa Institutet and Umeå Universitet) Benedikt Graf (Sustento Group) Martin Karlsson (Universität Duisberg Essen and IZA) Joseph Price (BYU and NBER)

BIG ACHIEVEMENTS OVER TWO CENTURIES

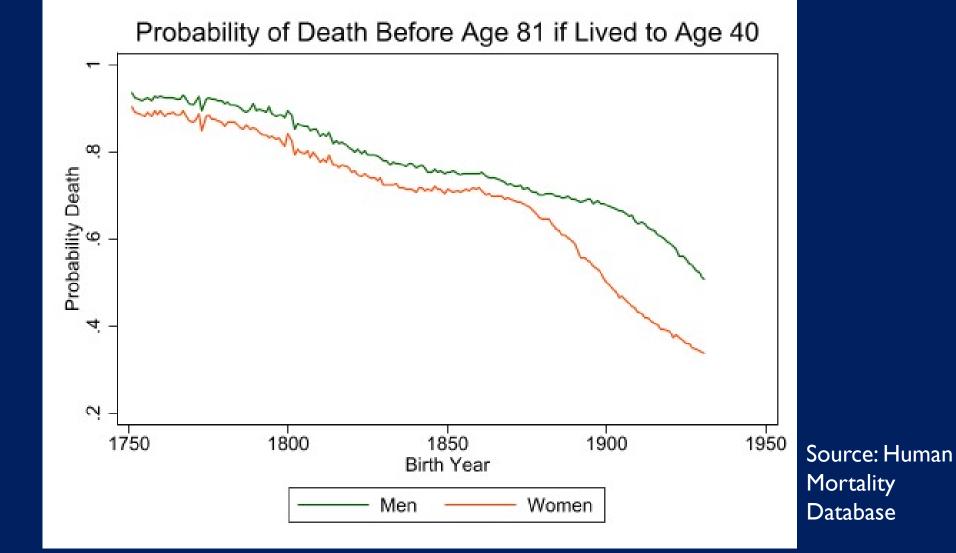

ECONOMIC GROWTH RISING LIFE EXPECTANCY

CONSIDER THE CASE OF SWEDEN

Source: Maddison Project Database 2020

EXPECTED YEARS OF LIFE AT AGE 0 AND 40 BY BIRTH COHORT, SWEDEN

Source: Human Mortality Database


PROBABILITY OF DEATH BY AGE 80 AMONG 40 YEAR OLDS BY BIRTH COHORT, SWEDEN

Estimated break points

Men's birth year: 1813 1867 1904

Women's birth year: 1808 1876 1903

Age 60 in < 1875 1875-1929 1930-1963 1964+

HOW DOES THE ECONOMY'S LEVEL OF DEVELOPMENT AFFECT HEALTH?

- Low productivity/income
 - Crisis mortality before 1780s
 - Chronic malnutrition important after 1780s (Fogel)
 - Affects development before age 2, including fetal programming
 - Intergenerational effects through parental investments in child health

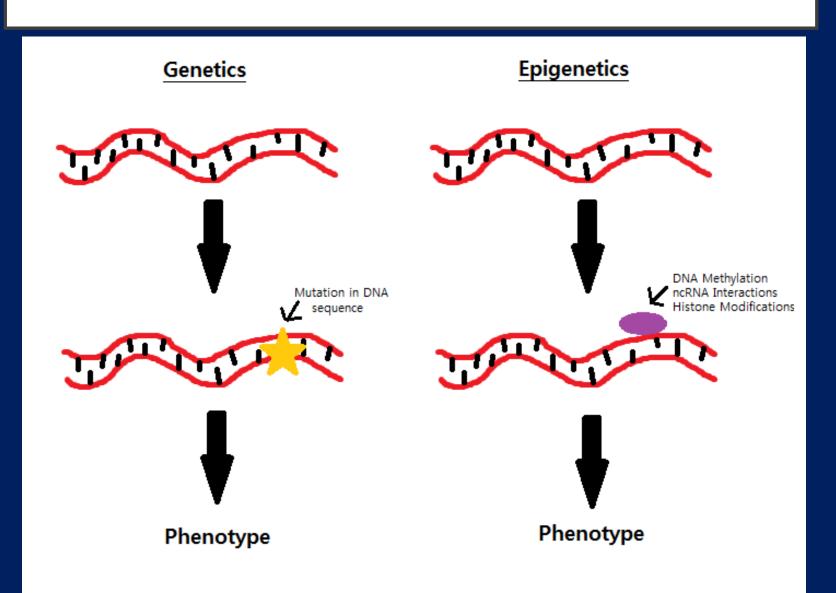
HOW DOES ECONOMY'S LEVEL OF DEVELOPMENT AFFECT HEALTH?

Low knowledge economy

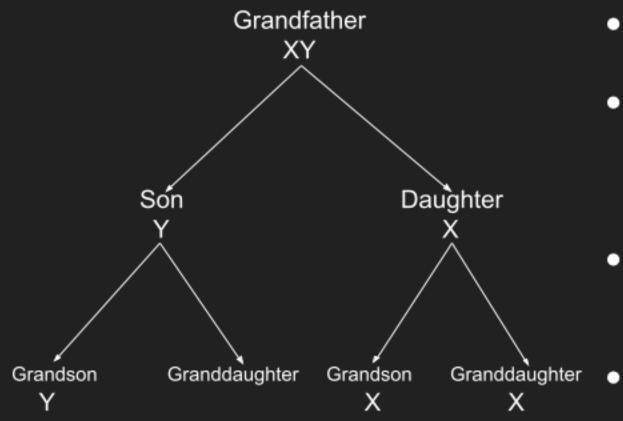
- Cannot control infectious disease (Preston, Easterlin, Deaton)
 - High infant and before age 5 mortality
 - Survivors have organ damage and inflammation at older ages
 - Survivors do not learn as much in school (Bleakley)
 - Health as public good
 - Developed bond markets (Cutler and Miller)
- Explanation for 1870-1960s mortality trends

A BOLD CLAIM

- We have underestimated the role of early economic growth in post-1870 improvements because we have ignored ancestral effects
- Past and present economic growth is in the epigenome
- Changes in gene function triggered by variance in food intake at critical ancestral ages
 - Direct biological effect


VARIANCE IN EARLY ECONOMIES

- Both lower levels income and higher variance
- Harvests more dependent on weather
- Food supply more dependent on local harvests
- Limited ability to preserve food
- Seasonality greater
- Less social and private insurance


WHAT MIGHT HAPPEN IN A LOW INCOME AND HIGH VARIANCE ECONOMY?

- Feasts and famines trigger epigenetic change in gene function which is inherited (Bygren)
 - Outcome is chronic disease for later generations
 - Men particularly sensitive (Y chromosome)
- Persistence as long as bad conditions remain
 - Epigenetic marks not erased in early gestation
 - Epigenetic marks not reprogrammed in late gestation
 - In utero mortality selection

WHAT IS EPIGENETICS?

If Effect Passed Along Sex Chromosome

- Males pass down Y chromosome to sons and X chromosome to daughters.
- If Y Chromosome
 - Effect on sons and male-line grandsons only. (Only males carry Y chromosome.)
- If X Chromosome
 - Effect on daughters only and female-line grandchildren only.
 - Is the Y chromosome more sensitive?
 - Non-recombining part might retain epigenetic marks more easily.

INSERTING EPIGENETICS INTO GROSSMAN'S PRODUCTION FUNCTION FOR HEALTH

Health (H) is a function of past health, the epigenome (P), and past investments (I).

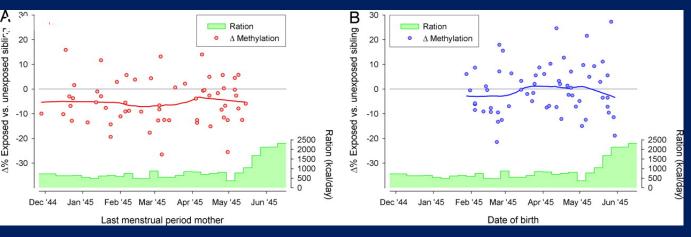
 $H_t = f(H_{t-1}, P_t, I_{t-1})$

The epigenome (P) depends on genetics (G), ancestral investments (I_A) and past investments (I_{t-1}) .

$$P_t = g(G, I_A, I_{t-1})$$

TESTING THE EPIGENETICS HYPOTHESIS

- Intuition for testing the null hypothesis
- Challenge for testing the null
- Biological markers
- Sex-specific transmission in response to ancestral shock at sensitive age
 - Evidence transgenerational transmission requires 3 generations if post-natal shock and 4 if prenatal
 - Need to separate from socioeconomic inheritance, culture (how sex-specific?)


OF MICE AND MEN

- Evidence of epigenetic inheritance in some animals
 - 25 generations of worms and 4 of mice
 - Can reverse in mice with good prenatal nutrition
 - Epigenetic transmission species-specific
- Handful of circumstantial evidence studies about humans

DUTCH WWII HUNGER WINTER STUDIES

Adverse metabolic profile and higher risk schizophrenia after prenatal famine exposure

Differential DNA methylation after prenatal famine exposure at promoter and imprinted regions of

A: Periconceptional exposure, B: later exposure Source: Heijmans et al. 2008

- Suggestive of epigenetic mechanism
- Start of pregnancy important
- Sex-specific methylation differences for some but not all genes
- What drives methylation?
 - Damage?
 - Plasticity? (match expected future environment)
 - Selection?
 - Stochastic DNA methylation and then differential survival on that DNA methylation

ÖVERKALIX STUDIES

- Bygren et al.
 - I,818 grandchildren of I64 men and I39 women born I890, I905, or I920
 - Good harvests during paternal grandfathers' (FF) prepuberty slow growth period (ages 9-12) predict grandsons' mortality from cardiovascular disease and diabetes
 - Change from good to bad harvests during paternal grandmothers' (FM) pre-puberty slow growth period (ages 8-10) predicts granddaughters' mortality from cardiovascular disease
 - Ancestral year fixed effect

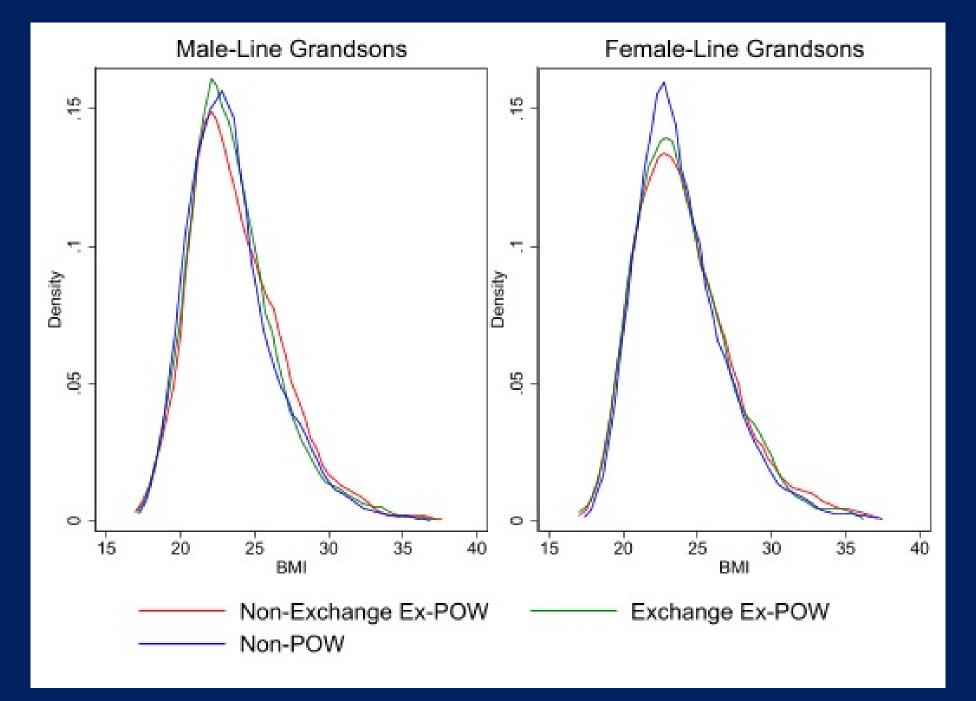
VÅGERÖ ET AL. : UPPSALA MULTIGENERATION STUDY

- Grandparents alive 1874-1910
- Good harvests during paternal grandfathers' (FF) pre-puberty slow growth period predict grandsons' mortality from cancer and cancer rates
- No effects of maternal grandmothers' (FM) pre-puberty slow growth period
- Grandchildren sample underpowered (incomplete life spans)

UNION ARMY VETERANS: COSTA

3 Groups

- I. Non-POWs
- 2. Exchange Period Ex-POWs
 - Shorter captivity period, better conditions
- 3. Non-Exchange Period Ex-POWs
 - Longer captivity period, reduced to walking skeletons
- Slow growth period ages 19-24 (specific to historical populations)

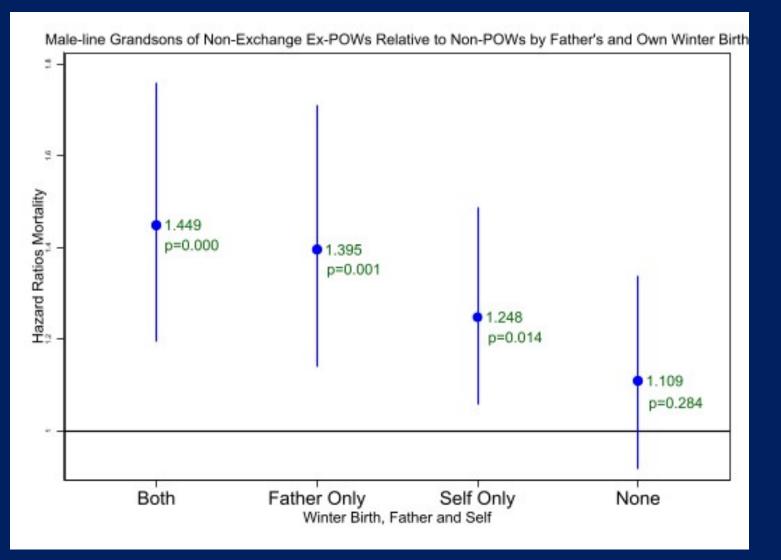

Male-line grandsons living to age 45 lose one year of life

Granchildren's Mean Years Lived by Ancestral Line and Grandfather's Ex-POW Status

	Male-line		Female-line	
Grandfather's	Grand-	Grand-	Grand-	Grand-
Ex-POW status	sons	daughters	sons	daughters
Non-POW	73.79	79.64	73.13	79.53
Exchange Ex-POW	73.60	79.78	72.62	79.27
Non-exchange Ex-POW	72.74	79.41	73.34	79.40

Years lived are for grandchildren who lived to age 45 and who were descended from the child of a veteran born after the war.

Male-Line Grandsons of Non-Exchange Ex-POWs are Overweight



VETERANS EXPOSED DURING SLOW GROWTH PERIOD

Food prices highest and vitamin levels lowest in first half of the year

Dynamic process where interactions with intrauterine environment (proxied by quarter of birth)?

Selection in intrauterine environment?

1.5 times more both father and self born in the both born in the second half of

Both vs None statistically significantly different, p=0.033

SUMMARY OF HUMAN STUDIES

- Evidence of epigenetic transmission when
 - Starvation in utero
 - Overnutrition or swings in nutrition pre-puberty
 - Starvation in late growing years

OPEN QUESTIONS

- What type of exposure leads to epigenetic transmission?
 - Feasts
 - Famines
 - \bullet Swings between feasts and famines \checkmark
 - \bullet Implications for benefits of economic growth \checkmark
- What timing of exposure leads to epigenetic transmission?
 - Periconceptional
 - Slow growth periods \checkmark
- What sex-specificity of transmission? \checkmark
 - Can we explain male-female health differences?
- Can we reverse epigenetic transmission?

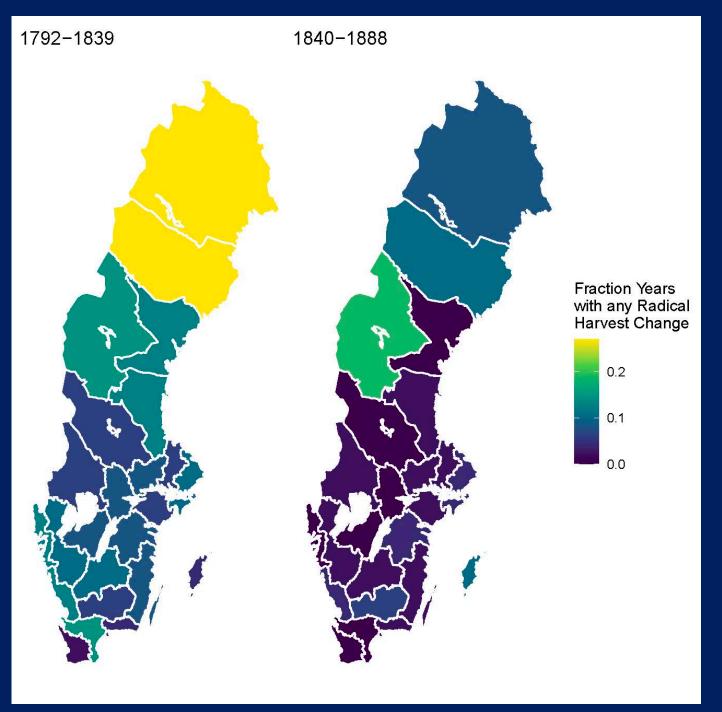
OPEN QUESTIONS, CONTINUED

- How much does epigenetics matter at the population level?

ANOTHER LOOK AT SWEDEN

- Harvest fluctuations
- Remote areas
- Good data

Focus on harvest swings


HARVESTS IN SWEDEN

- Create harvest data series by county (län)
 - Hellstenius, Statistics Sweden, Utterström, Hallberg et al.
 - Assess as good, normal, bad
 - Radical change = (good to bad) or (bad to good) harvest swing
 - Not balanced panel (more likely to have northern Sweden early on)

More shocks and bigger shocks occur prior to 1820

Most harvest swings are before 1840

Caveat: looking at big swings only

BAD HARVESTS DON'T AFFECT LOG(CROP INDEX PRICE) AFTER 1840

	Before	Before 1840		After 1840	
Bad Harvest	0.111***	0.068***	-0.001	-0.032*	
	(0.014)	(0.014)	(0.016)	(0.018)	
	[0.000]	[0.000]	[0.972]	[0.073]	
Good Harvest	-0.077***	-0.035***	-0.062***	-0.031***	
	(0.012)	(0.012)	(0.008)	(0.009)	
	[0.000]	[0.005]	[0.000]	[0.000]	
Neighbor has a					
Bad Harvest		0.089***		0.019	
		(0.013)		(0.013)	
		[0.000]		[0.138]	
Good Harvest		-0.063***		-0.056***	
		(0.012)		(0.009)	
		[0.000]		[0.000]	
Observations	1,409	1,409	1,756	1,756	
Number of counties	25	25	25	25	

Crop price index constructed using 1820 production weights and the Jöberg's price series for rye, barley, and oats.

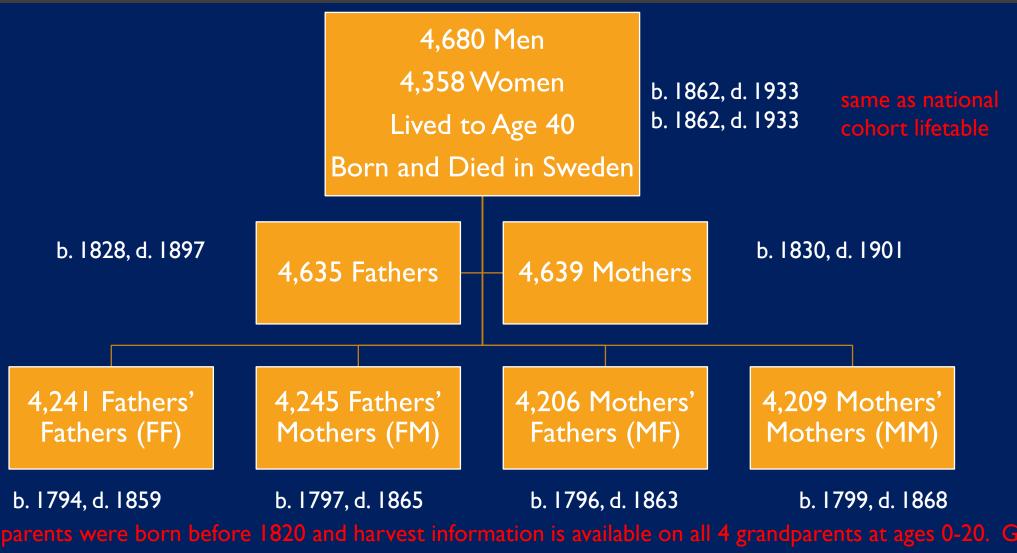
BAD HARVESTS AFFECT MORTALITY PRIOR TO 1790 ONLY

Bad Harvests and Log(Crude Mortality Rate) in Parishes

	1749-	1789-	1820-
	1788	1819	1859
Bad harvest	0.054^{***} (0.009) [0.000]	$0.004 \\ (0.005) \\ [0.444]$	$0.008 \\ (0.006) \\ [0.144]$
Observations	$22,\!984$	$55,\!546$	$88,\!031$
R-squared	0.152	0.116	0.138

Annual parish level crude mortality rates are from SHiPS (https://www.umu.se/en/centre-for-demographic-and-ageing-research/infrastructure-at-cedar/open-data/ships/)

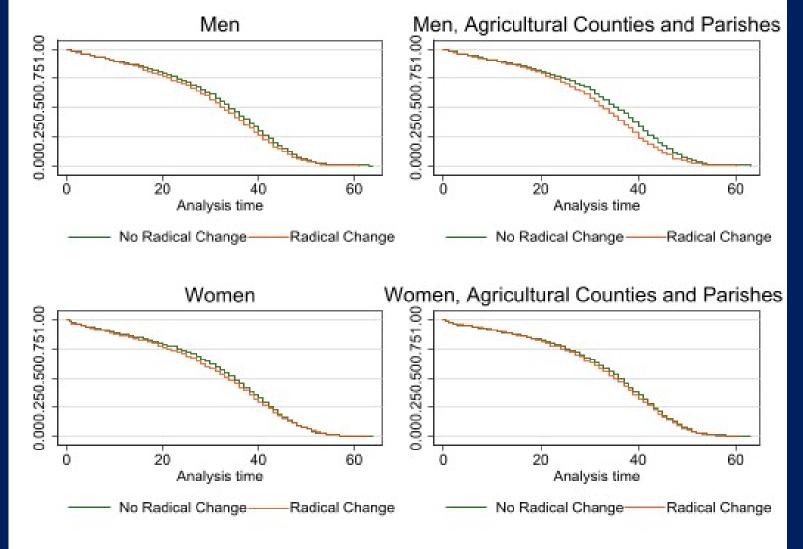
FOCUS ON DESCENDANTS OF GRANDPARENTS BORN BEFORE 1820


- Grandparents were in a Malthusian economy
- High transport costs
 - Roads impassible in spring
- Limited harvest storage possibilities
 - Stored grain destroyed by damp weather, vermin, fire
 - Parish storehouses (magasins) more common in central Sweden

DATA SOURCE

• Family Search

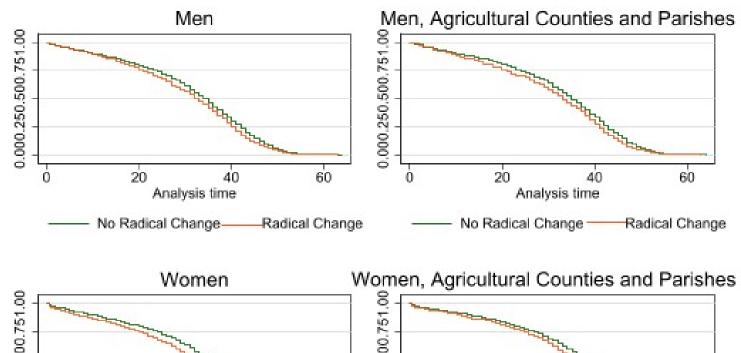
- Everyone born in a Swedish county and their descendants
 - > 6.6 million people
 - All deceased
 - Birth place and less often death place
 - Extensive place coding required
 - High child mortality
 - Most family histories incomplete
 - More records for those born late 1800s/early 1900s


ANALYTICAL SAMPLE WITH MEDIAN BIRTH AND DEATH YEAR

Norrbotten and Västerbotten are over-represented

SURVIVORSHIP AND RADICAL CHANGE HARVEST QUALITY FF AT AGE 9-12

Restricted to those born and dying in paternal grandfather's birth county



FF (father's father) or FM (father's mother) Agricultural **Counties and Parishes Exclude** low agricultural and high manufacturing and mining value added counties in 1800: Stockholm, Blekinge, Goteborg och Bohus, Gavleborg, Orebro, Dalarna, Varmland, Vastmanland, Sodermanland

Keep parishes with open soil sown above 50% or more than 75% farmers or cottagers

SURVIVORSHIP AND RADICAL CHANGE HARVEST QUALITY FM AT AGE 9-12

Restricted to those born and dying in paternal grandmother's birth county

500.751.00 500.751.00 0.000.250. 0.000.250. 20 60 20 40 40 0 60 Analysis time Analysis time No Radical Change-Radical Change No Radical Change-Radical Change FF or FM Agricultural **Counties and Parishes Exclude** low agricultural and high manufacturing and mining value added counties in 1800: Stockholm, Blekinge, Goteborg och Bohus, Gavleborg, Orebro, Dalarna, Varmland, Vastmanland, Sodermanland

Keep parishes with open soil sown above 50% or more than 75% farmers or cottagers

MAIN SPECIFICATION

Identification is from grandparents' harvest conditions in county of residence at critical ages Basically a grandparents' (birth year x birth county) fixed effect

Each year of life (t) between age 40 and 80 for individual i is a single observation. Either live or die in that year.

Dependent variable is

 $D_{i,t} = 1$ if died in year t, 0 otherwise

Linear probability models for each sex, clustered on i Allows for fixed effects Controls are for grandparents', own early life and contemporaneous conditions

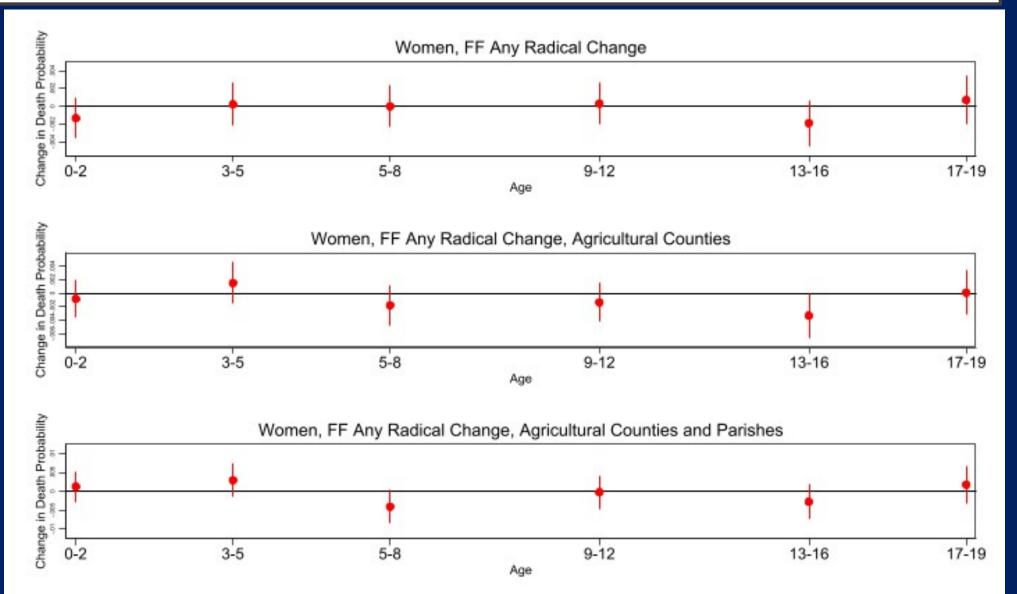
MAIN SPECIFICATION

$$D_{i,t} = \beta_0 + \sum_G \sum_a \beta_{1,a,G} R_{a,G,i} + \beta_2 A_i + \beta_3 B_i + \beta_4 Q_i + \beta_5 \log(\mathrm{IMR}_{i,t}) + \beta_6 C_i + \beta_7 C_{G,i}$$

 $R_{a,G,i} = 1$ if radical change in harvest quality of grandparent (G) at age group a, 0 otherwise $Q_i =$ quarter of birth dummies $B_i = 1$ if bad harvest in county at birth, 0 otherwise $IMR_{i,t}$ = national infant mortality rate in year t $A_i =$ fixed effect for age $C_i =$ fixed effects own birth year, death county $C_{G,i}$ = fixed effects grandparental birth year, birth county plus control for latitude and longitude of own birth place

VARIABLES

Factor Type	Variable	Mean Men	Mean Women
Ancestral	FF (father's father) any radical change in harvest quality at age 9-12	0.37	0.36
	FM (father's mother) any radical change in harvest quality at age 8-10	0.31	0.29
Early life	Bad harvest in utero	0.16	0.16
	Quarter of birth: I st 2 nd 3 rd 4 th	0.26 0.24 0.25 0.25	0.26 0.25 0.24 0.25
Contemporaneous	Log(national infant mortality rate) Average over each year lived age 40-80	-2.77 (6.3% IMR)	-2.78 (6.2% IMR)

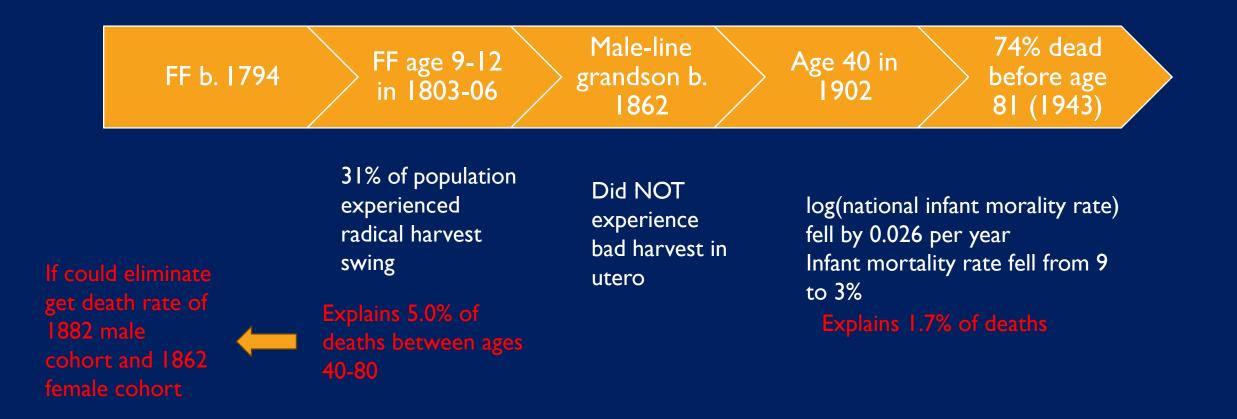

FATHER'S FATHER'S (FF) RADICAL CHANGE AT AGES 9-12 ASSOCIATED WITH MEN'S MORTALITY

WEAK RELATIONSHIP WOMEN'S MORTALITY AND FATHER'S MOTHER'S (FM) RADICAL CHANGE AGE 8-10

NO RELATIONSHIP FATHER'S FATHER'S (FF) RADICAL CHANGE AT AGES 9-12 AND WOMEN'S MORTALITY

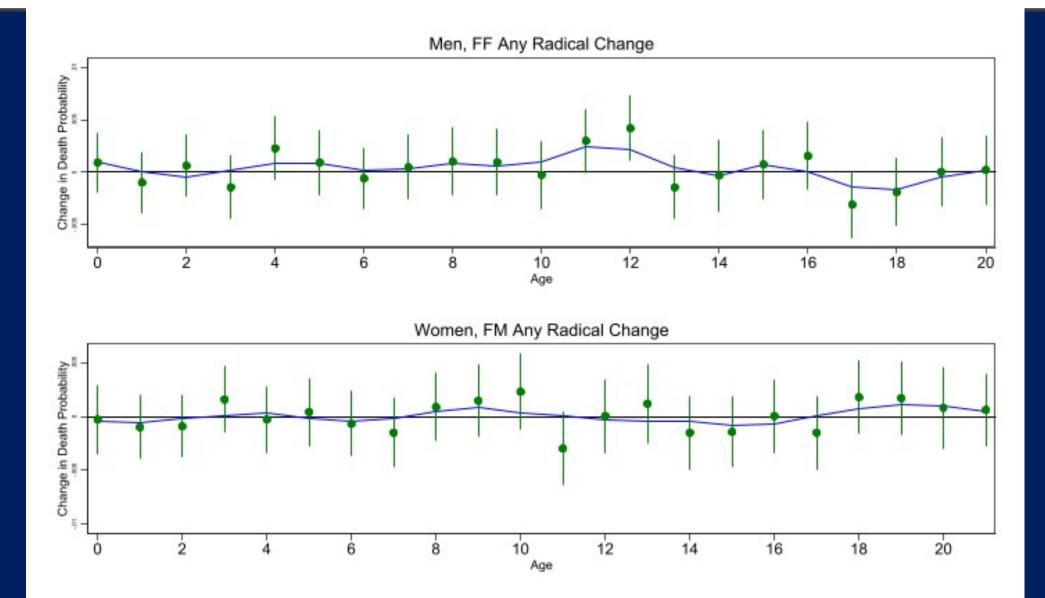
NO RELATIONSHIP FATHER'S MOTHER'S (FM) RADICAL CHANGE AT AGES 8-10 AND MEN'S MORTALITY

ROBUSTNESS

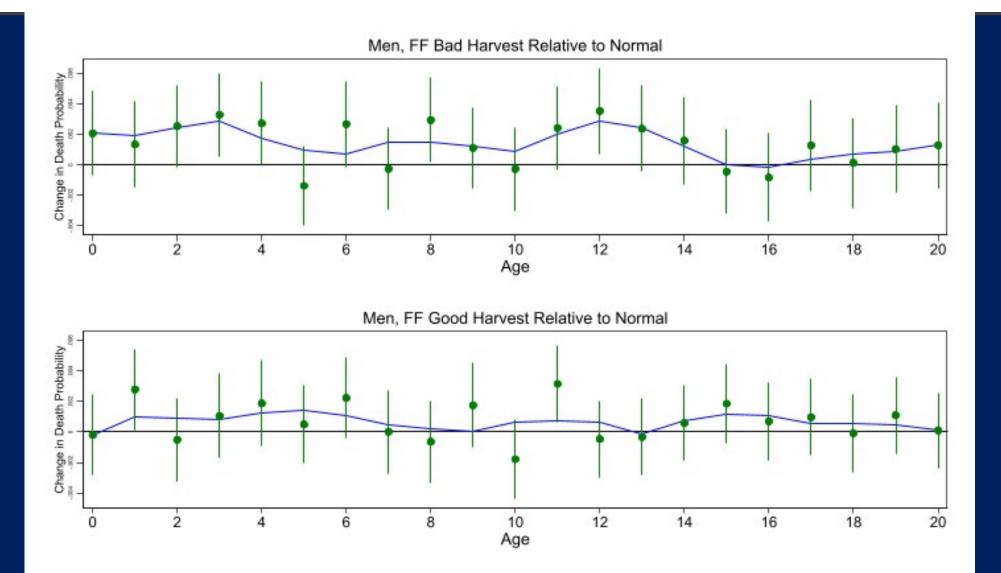

- Similar results if restrict sample to
 - Husbands and Wives (suggests not adult SES)
 - Cousins or Siblings (suggests not childhood factors)
- Reweight main regression so that FF counties representative of county populations in 1795
 - Coefficient falls to 0.003 (p=0.021) on FF radical change at ages 9-12

MAGNITUDE OF ANCESTRAL EFFECTS FOR MEN SIMILAR TO CONTEMPORANEOUS FACTORS

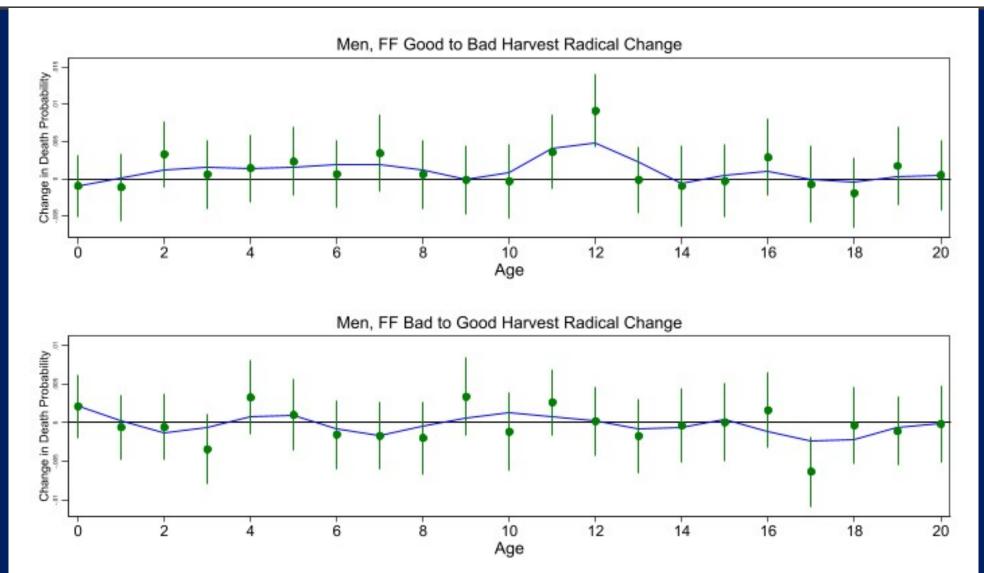
FF Population Weighted Results	Men	Women
FF radical change age 9-12 (men) FM radical change age 8-10 (women)	0.003 P=0.021	0.002 P=0.264
Bad harvest in utero	0.002 P=0.124 Statistically significant 0.003 and 0.005 if restrict to agricultural counties and agricultural counties and parishes	0.001 P=0.557
Born 2 nd quarter vs 4 th quarter	0.00 I P=0.695	0.00 I P=0.334
Log(national infant mortality) in each year	0.012 P=0.007	0.017 P=0.001
¹ / ₂ std dev increase in log(national infant mortality rate)	0.003	0.004


FATHER'S FATHER (FF) RADICAL CHANGE IMPORTANT FOR MEN'S NATIONAL MORTALITY

• Consider 1862 cohort



HARVEST SWINGS VS HARVEST TYPE?


CONSIDER FF AND FM RADICAL CHANGE IN EACH YEAR AND DEATH PROBABILITY (NO CONTROLS FOR OTHER GRANDPARENTS' HARVEST SWINGS)

BAD AND GOOD HARVESTS ASSOCIATED WITH HIGHER MORTALITY AT FF AGES 9-12 SUGGESTING IT IS SWINGS

BOTH GOOD TO BAD AND BAD TO GOOD FF HARVEST SWING AT AGES 9-12 ASSOCIATED WITH MEN'S HIGHER MORTALITY

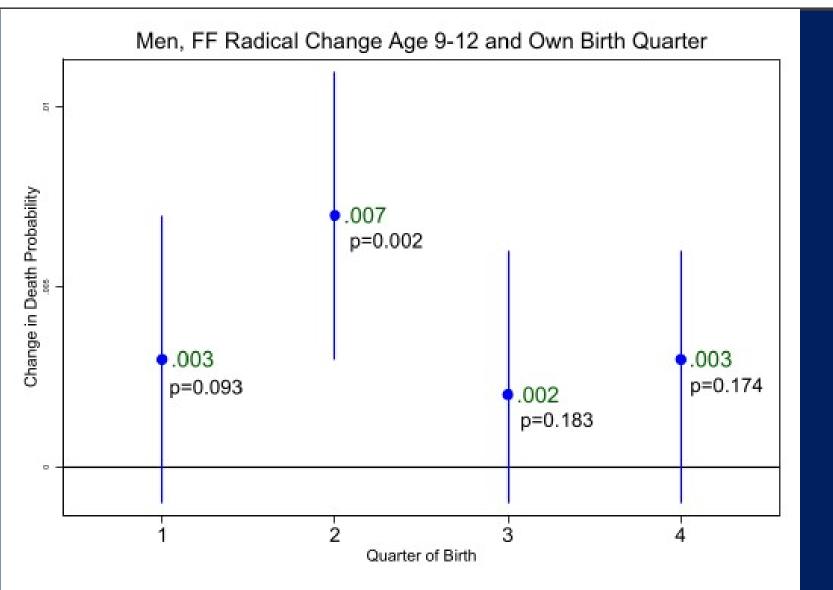
- Reduce likelihood of bad harvest
- 1700-80: Agricultural production and population grow at same pace
- I780-I860: Agricultural production more than quadruples and Sweden becomes grain exporter
- Rye price convergence across areas after 1820

HOW REDUCE HARVEST SWINGS?

- Incentives and Institutions
 - Farmers keep more of production
 - Abolition of interior tolls in 1810
 - Export regulations eliminated 1828
 - Enclosures of 1803, 1807 and 1827 lead to crown tenants purchasing land and turning forest land into farm land
- Incentives from Growing Markets
 - Market access to mining areas and manufacturing towns
- Scientific Agriculture
 - "Enlightened" landlords and newly engaged commercial classes

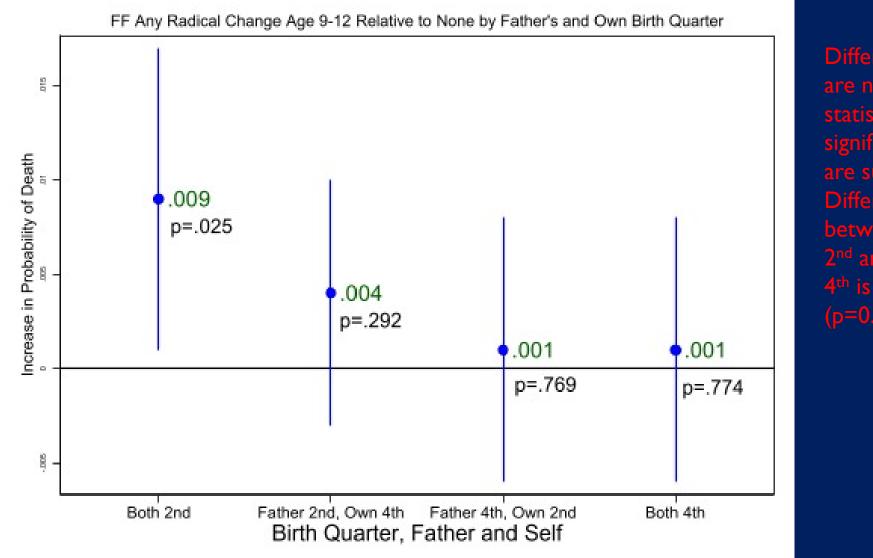
ABILITY TO ADJUST TO DROUGHT IMPROVES OVER TIME

Dependent Variable: Dummy =1 if Bad Harvest	749- 839	840- 870	Δ
	Average Marginal Effects		
Below average spring temperature	0.177***	0.173***	-0.004
	(0.025)	(0.043)	(0.049)
	[0.000]	[0.000]	[0.930]
Below average summer precipitation	0.102***	-0.005	-0.107**
	(0.021)	(0.047)	(0.050)
	[0.000]	[0.916]	[0.033]


Thanks to Nippe Lagerlöf for providing the temperature and rainfall data. County smoothed temperature and precipitation were constructed using a Hodrick-Prescott filter on the logarithmic values. Below a logarithmic value of 0.15 is below average.

WHY ARE BAD LOCAL HARVESTS NO LONGER SO IMPORTANT?

- Trade: local shocks no longer systemic shocks
 - Decline in transport costs
 - Abolition tolls
 - Canal building
 - 1845 private railroads and 1855 state railroads
- Insurance
 - National poor law in 1847


GIVEN ANCESTRAL INHERITANCE, HOW MITIGATE THE EFFECTS?

EFFECTS OF FATHER'S FATHER'S (FF) RADICAL CHANGE AT AGE 9-12 CONCENTRATED AMONG MEN BORN IN THE SECOND RELATIVE TO THE FOURTH QUARTER

Statistical significance of difference between 2nd quarter and 1st: 0.123 3rd: 0.059 4th: 0.072

IF BOTH FATHER AND SELF BORN IN FOURTH QUARTER THEN WORST OFF?

Differences are not statistically significant but are suggestive. Difference between both 2nd and both 4th is 0.008 (p=0.124)

HOW TO INTERPRET QUARTER OF BIRTH EFFECTS?

- Interaction uterine effects and epigenetic effects
- 2nd quarter harshest in terms of food supply
 - No epigenetic reprogramming male primordial germ cells in late gestation?
 - Room for policy interventions to mitigate ancestral shocks
 - Mortality selection via stillbirths?
 - Still get random adverse epigenetic profiles

SUMMARY RESULTS

- Epigenetic inheritance plays a role in the transmission of longevity
 - Shocks to men matter and male offspring are disproportionately affected
 - Male mortality greater than female mortality and different chronic diseases
- Dynamic process: contemporaneous effects interact with epigenetic effects
- Inheritance likely in early/developing economies
 - Variance in ancestral food supplies
 - Levels of contemporary food supply
- Malthusian economy left its inheritance in changed epigenome
- Economic growth important for escape premature mortality

IMPLICATIONS OF EPIGENETICS FOR HEALTH TODAY?

• Can we explain health in developing countries?

- 1850-1899: 24 major famines in India
- As overall health improves concern becomes health inequality
 - Regional/local health inequality (e.g. Överkalix)
 - Family health inequalities

IMPLICATIONS OF EPIGENETICS FOR HEALTH TODAY?

Medical innovations important for health today

- Challenge of incentives for innovations and how deliver innovations
- Behavioral challenge: better educated better able to use innovations
 - Heckman: grafts early childhood development of self-control onto Grossman health model
- Family transmission of poverty and risky behavior (Dunnedin Study)
 - Double-whammy of complementarity of epigenetic inheritance and behavior?

If they ask you anything you don't know, just just say it's due to epigenetics.

13-01-2017